又一AI公司被戳破謊言:"偽裝到你做到為止"真的很難

又一AI公司被戳破謊言:又一AI公司被戳破謊言:

歡迎關注“創事記”微信訂閱號:sinachuangshiji

域名多個 AI, 融資可能多 50%。為了“夢想”,先畫個餅不失為上策。

文/宇多田

來源:機器之心(ID:almosthuman2017)

“fake it till they make it”(假裝做到,直到你做到為止)這句話,在創業圈一直非常流行。 

鑒于許多創業公司以及成熟企業的產品都不會在 100% 成功后才發布,這似乎是一個圈內默認的操作。但有一個疑問: 

在開發人工智能技術方面,當初創公司也在假裝(fake it till they make it)的時候,多少才算太多? 

弓滿則斷。

獲得資本與緩沖時間的代價,是要冒著“善意謊言”還沒有兌換成現實就在中途被戳穿的巨大風險。 

上周,紐約時報剛剛曝光明星公司 One Concern 制作的 AI 災難應對解決方案名不副實,災難預測的部分結果被災后專家與工程師認為可能會有致命缺陷;

今天,某外媒就做了另一個披露:

聲稱正在建立人工智能 app 開發平臺的印度創業公司 Engineer.AI,其實并沒有真正使用人工智能開發應用程序。

相反,真正的貢獻者是使用手動方法的員工們。

根據 Engineer.ai 創始人 Sachin Dev Duggal 的公開演講以及宣傳資料顯示,Engineer.ai 開發的一項名為 Natasha 的人工智能軟件能夠幫助任何人創建定制化 app。

換句話說,任何人都可以在這款 AI 輔助工具的幫助下通過點擊網站上的菜單來迅速創建一個移動應用程序。大致流程如下:

用戶可以選擇任何自己喜歡的現有應用程序模板(如公司網站給出的例子是訂披薩的 app)。然后 Natasha 在很大程度上會自動創建一個相似的應用程序。

又一AI公司被戳破謊言:又一AI公司被戳破謊言:

公司表示,由于支撐流行應用程序的大部分代碼都是類似的,因此該公司的“人工智能軟件”已經掌握了這里面大部分結構,可以幫助用戶自動組裝新的應用程序。

這將使得整個過程比傳統的應用程序開發更便宜、更快捷。

至于效果如何,某外媒援引 Engineer.ai 發言人稱——“在公司最近開發的一個 app 過程中,大約有 82% 是由這款軟件『在第一個小時內自動生成的』,這就是 AI 的魅力。”

然而,Engineer.ai 的內部工程師在接受某外媒采訪時卻透露,AI 并沒有像這家公司聲稱的那樣為應用程序自動匯編代碼。

他們指出,該公司的大部分工作依賴于印度和其他地方的“人工工程師”。而且即使考慮到科技創業公司普遍存在的“偽裝到你做到為止”的心態,公司關于人工智能的應用也被夸大了。

當被媒體問及該公司有哪些使用人工智能的案例時,公司曾表示,客戶需要支付的價格和工程時間表都是完全自動計算出的。 

“其中一部分過程使用了自然語言處理,這項人工智能技術主要是為了識別和理解文本或語音。

另外,還使用決策樹(基于選擇的圖形或模型)將任務分配給開發人員。”

然而,一些現任和前任員工則向某外媒透露,實際上一些定價和時間表的計算是由傳統軟件產生的,而且大部分工作總體上是由員工手動完成的。

這些人甚至還表示,該公司并沒有多少自然語言處理技術能力,而公司內部使用的決策樹不應被視為人工智能。 

這個說法得到了瑞典深度學習軟件公司 Peltarion 創始人 Luka Crnkovic-Friis 的認同。他認為,稱決策樹為人工智能通常“有些牽強”。 

“如果你告訴客戶你正在使用人工智能,他們可能不會期待使用一些上世紀 50 年代的技術。決策樹其實是一項非常古老和簡單的技術。”

有趣的是,就在本月,Engineer.ai 又悄悄在網站上對自己的技術與產品做了一些更加細致的解釋與說明。

他們把介紹修改為“平均約 60% 的可復用軟件是由機器生產的,其余部分是人工生成的,用于開發應用程序”。

又一AI公司被戳破謊言:又一AI公司被戳破謊言:

我們并不是完全自動化的應用程序開發。相反,我們依賴于人工與人工智能的合作關系,其中可復用軟件 (在傳統軟件開發中,重復代碼約占產品的 60%) 是機器生產的,其余 40% 是機器生產的;大多數項目的獨特之處在于“人工生產”。我們相信人類的創造力和才能將永遠是創新和構建之旅的一部分。

實際上,從實用的角度來看,花費巨資進行完全自動化開發對我們沒有任何好處,而我們可以通過專注于用自動化來解決那些重復性強和效率低下的工作(雖然 80-20 規則是經典,但我們是 60-40 規則!),進而實現客戶的利益。

除了產品的技術應用受到質疑,其在推出產品的時間上,也被認為遵循了“fake it till they make it”的原則。

Engineer.ai 一位熟悉公司運營情況的人士透露,在剛剛過去的兩個月里,公司才開始構建自動化應用程序構建所需的技術。

他補充說,公司距離將人工智能技術應用于其核心服務其實還有至少一年時間。

當然,作為一項有門檻的技術,越來越多的創業公司已經發現構建人工智能比預期要難很多。但除了技術本身,收集數據來訓練支撐這種技術的機器學習算法可能也需要花費很長時間。

為了訓練新算法模型,像 Engineer.ai 這樣的應用程序開發商需要從客戶那里收集成千上萬的請求,并將它們與工程師構建的代碼相結合。

但華爾街援引幾位熟悉 engineer AI 的人的話稱,這家公司還沒有收集到足以支撐人工智能技術得以應用的數據。

不過公司發言人反駁,他們已經收集了超過 6 億條記錄以構建更好的 AI模型。

另外,在今年 2 月被解雇又同時向公司提起訴訟(這些在此前都沒有被公開)的Engineer.ai 前首席業務官 Robert Holdheim 也同時披露了創始人 Duggal 曾經告訴自己的話:

“他說,每個科技創業公司為了獲得資金都會夸大其詞。我其實是認同的,這并不奇怪,只有這樣才能讓我們有錢得以開發這項技術。

但是 Duggal 曾告訴投資者,工程師已經完成了 80% 的開發工作,但事實上,我們還沒有開始開發這個產品。”

1

域名多個AI,融資可能多50%

“fake it till they make it”究竟是對是錯,我們無法給出一個確切得結論;而人工智能技術在許多情況下,的確能夠幫助企業省錢或更精準地找到目標用戶。

但投資領域不得不面對的現實是,在科技領域,評估一家公司究竟有沒有有效利用人工智能技術是一個日益嚴峻的挑戰。

由于人工智能技術本身十分復雜且定義模糊而松散,非專業人士很難辨別它何時以及怎樣被部署及有效利用。

面對投資方,許多創業公司都說自己在使用人工智能作為主要吸引公司客戶的方式,但這種說法往往很難經過嚴格審查。

因此通常情況下,拿出一份“由 AI 驅動”的解決方案,的確更容易得到資本的厚愛。

根據權威數據分析機構 CB insights 提供的數據顯示,人工智能創業公司的平均交易規模從 2013 年到 2018 年幾乎翻了三倍。

而另一家數據分析機構 PitchBook 也表示,2018 年風險投資對人工智能創業公司的投資幾乎比上一年翻了一番,達到 310 億美元。 

特別是域名含有“ai”的公司的數量,在一年內增長了兩倍多。目前這種收費的域名擴展在全球科技創業公司中非常受歡迎。

此外,就在上個月,日本科技巨頭軟銀集團又公布了一個以人工智能技術為主的投資基金——愿景基金 2 期,預計資本總額為 1080 億美元。

而作為一個已有兩年歷史的資金池,愿景基金 1 期的資金總額也已經達到了約 1000 億美元,其中有大約 700 億美元已經被注入到若干家 AI 技術公司里。

總部位于洛杉磯的 Engineer.ai,就在去年從包括 Deepcore inc. 在內的投資機構那里籌集到 2950 萬美元,而 Deepcore inc. 正是軟銀的全資子公司。

軟銀等機構不斷的資金投入,一方面可能會繼續提高 AI 公司們的市場估值,而另一方面,也讓許多技術專家和部分投資者的質疑聲更為統一。 

“人工智能技術到目前為止最大的問題其實是——『承諾過多,但卻實現不了』”,這是布魯金斯學會智庫技術創新中心主任 Darrell West 在上周發出的感嘆。

“從幾何時,這已經變成了一種營銷手段。”

就像我們剛才在第一部分所提到的,這項技術的應用有著清晰的門檻。

一方面,它雖然可以很容易地在測試或初步形式中起步,但實際規模化部署要困難很多。

另一方面,獲取和標注必要的訓練數據來建立有能力的人工智能模型可能極為昂貴和費時,這也是為何周一我們報道過的一家硅谷人工數據標注公司能夠在 3 年內成長為獨角獸的根本原因。

只是,鑒于一些投資方并不十分出色的辨別力和技術應用的有限性,不知道從什么時候開始,創業者們對“只有用人工智能做擋箭牌,才能籌集到更多資本”的領悟愈加上癮。

英國投資基金 MMC Ventures 的一項針對 2000 余家 AI 技術公司的調查顯示,聲稱自己有某種人工智能技術的創業公司能夠比其他軟件公司多吸引15%~ 50% 的資本。

然而他們也表示,其中 40% 甚至更多的公司其實根本沒有使用任何形式的人工智能技術。

波士頓咨詢的人工智能專家 Philipp Gerbert 則認為,不能把責任都歸于創業公司。

全球對人工智能融資的濃烈興趣以及多國之間展開的“技術軍備競賽”,促使創業公司和上市企業開始將自己標榜為人工智能技術+服務機構——

“即使它們可能只有一個簡單的聊天機器人。”

2

人才稀缺,但AI公司卻越來越多

“AI 人才”是技術圈這幾年少數討論熱度持續走高的話題之一。然而,這個話題也讓我們延伸出一個抓破頭皮也搞不明白的矛盾點:

一方面,AI 人才已經緊缺到了各大培訓機構都開始出售“AI 速成班”的地步,而為何另一邊,自稱有 AI 技術的企業卻如雨后春筍般出現?

Engineer.ai 另一個被質疑的問題,正是出在人才身上。

某外媒判斷這家公司可能缺乏一批深度具備機器學習或人工智能專業知識的高級工作人員。

因為當第一次被要求介紹一個具有人工智能技術背景的高級雇員時,他們只提供了一個名字。 

而在 Engineer.ai 隨后的一份聲明中也承認,人工智能專家真的很難找到。但他們也表示最近招聘的一些員工正在研究機器學習和人工智能。 

不過,該公司僅在聲明中詳細列舉了有三名團隊成員在數據科學和其他學科方面的經驗,并沒有具體說明他們的名字。

這很容易讓人想到上周被紐約時報質疑的 One Concern,其也存在“缺乏有研究成果的在職 AI 技術開發者”等人才問題。

顯然,這不是一家企業的窘境。 

有行業人士透露,目前很多自稱擁有 AI 技術能力的企業,將利用廉價人力作為暫時的權宜之計,以便于在不斷招人以及收集到數據以后推出真正的機器學習算法。 

“我認識的一家公司說正在使用人工智能軟件讀取和收集收據,而實際上他們是用人類在做這項工作。這在行業里也不是秘密。”  

從 2015 年到現在,對相關人才的需求已經從 AI 技術領域擴展到了更寬泛的行業領域,這也讓企業對具備人工智能、數據科學和相關領域技能的員工需求呈現激增態勢。 

根據美國技術行業組織 CompTIA 在 6 月公布的一項數據顯示,IT 行業的失業率在 5 月份降至 1.3%,呈現 20 年來的最低水平。 

這更加劇了對稀缺人才的競爭。 

因此,在這類技術人才更容易朝大企業、明星創業公司聚攏的過程中,或許對新公司以及行業性技術公司的考量,并沒有如外媒講的那樣難以分辨。

參考來源:紐約時報、The Verge

猜你喜歡

關于我們· 聯系我們· 商務合作· 免責聲明· 技術支持

Copyright ? 2018-2020, 東方財經網 版權所有 侵權必究. 信息維權、舉報:853029381@qq.com

免責聲明:以上所展示的信息由企業自行提供,內容的真實性、準確性和合法性由發布企業負責, 東方財經網 對此不承擔責任.

吉祥体育彩 夹江县 | 广水市 | 庄浪县 | 东丽区 | 连山 | 长治市 | 望奎县 | 徐州市 | 治多县 | 鹰潭市 | 维西 | 两当县 | 临沂市 | 禄丰县 | 乌审旗 | 分宜县 | 江达县 | 祥云县 | 哈密市 | 会泽县 | 龙川县 | 井冈山市 | 梅河口市 | 永顺县 | 隆昌县 | 永吉县 | 海安县 | 田东县 | 浦江县 | 甘洛县 | 深州市 | 靖安县 | 揭西县 | 通城县 | 东源县 | 柘城县 | 贵定县 | 察隅县 | 盐源县 | 宝丰县 | 枞阳县 | 山丹县 | 云龙县 | 屯留县 | 大方县 | 大宁县 | 红河县 | 健康 | 九龙城区 | 大厂 | 江口县 | 宽甸 | 万载县 | 南乐县 | 虞城县 | 分宜县 | 介休市 | 名山县 | 寿光市 | 建瓯市 | 洪泽县 | 林周县 | 麻栗坡县 | 丁青县 | 丽水市 | 益阳市 | 且末县 | 伊宁市 | 宁夏 | 汶上县 | 色达县 | 武穴市 | 宜丰县 | 乌兰浩特市 | 连平县 | 四平市 | 石阡县 | 阿鲁科尔沁旗 | 若尔盖县 | 青海省 | 桐乡市 | 谢通门县 | 庆城县 | 延安市 | 沾化县 | 乌审旗 | 宜城市 | 深圳市 | 长岛县 | 丹阳市 | 迁安市 | 股票 | 若尔盖县 | 舒兰市 | 永平县 | 凤城市 | 北海市 | 通州市 | 罗定市 | 长顺县 | 栾城县 | 定兴县 | 农安县 | 江源县 | 庐江县 | 赤壁市 | 新泰市 | 林甸县 | 云林县 | 芦山县 | 遂川县 | 油尖旺区 | 泗水县 | 灵武市 | 嘉祥县 | 吴旗县 | 大宁县 | 镇康县 | 阳曲县 | 都昌县 | 永州市 | 大邑县 | 墨脱县 | 沅江市 | 资溪县 | 玉田县 | 甘谷县 | 宁津县 | 梨树县 | 雷山县 | 东阳市 | 贺州市 | 望都县 | 化州市 | 山西省 | 全南县 | 唐河县 | 来凤县 | 中山市 | 遂宁市 | 莆田市 | 霍城县 | 明水县 | 周口市 | 筠连县 | 昌宁县 | 丹巴县 | 平和县 | 海淀区 | 道真 | 临朐县 | 盐城市 | 六枝特区 | 石狮市 | 肃南 | 来安县 | 黄陵县 | 孝义市 | 东丰县 | 九台市 | 河北区 | 镇沅 | 米脂县 | 宜良县 | 吴川市 | 柳河县 | 台南县 | 南昌县 | 麦盖提县 | 当阳市 | 巴彦淖尔市 | 陈巴尔虎旗 | 清涧县 | 吕梁市 | 芦溪县 | 郁南县 | 元谋县 | 青海省 | 隆化县 | 二手房 | 北辰区 | 阿图什市 | 类乌齐县 | 新田县 | 赤峰市 | 礼泉县 | 清远市 | 张家川 | 南投县 | 淄博市 | 亚东县 | 绥德县 | 德惠市 | 枞阳县 | 衡南县 | 文山县 | 马关县 | 瓮安县 | 凤冈县 | 新丰县 | 青浦区 | 泸西县 | 吉安市 | 加查县 | 新泰市 | 伊宁县 | 内黄县 | 马尔康县 | 克什克腾旗 | 广灵县 | 黎川县 | 嘉鱼县 | 新蔡县 | 祁东县 | 曲靖市 | 江达县 | 雅安市 | 青州市 | 峡江县 | 乡宁县 | 油尖旺区 | 景洪市 | 济南市 | 甘孜 | 桐城市 | 德格县 | 历史 | 沭阳县 | 永兴县 | 平昌县 | 周至县 | 新和县 | 改则县 | 永仁县 | 安化县 | 寻乌县 | 和平区 | 资讯 | 墨玉县 | 禹州市 | 三江 | 缙云县 | 名山县 | 苗栗县 | 闵行区 | 鹤岗市 | 苍南县 | 缙云县 | 鸡东县 | 隆德县 | 新宁县 |